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Introduction

In the past few years our knowledge of the earth's gravitational field has
increased significantly. Part of this improvement has come from combining
terrestrial surface gravity information with satellite derived data. This merger
has enabled a solution where the lower degree (and resonance) terms have domi-
nantly been determined from satellite data while the higher degree terms have
dominantly been inferred from the terrestrial data.

In carrying out these combination solutions it has been customary to use
the gravity data in the form of averages in 5° equal area blocks. Recent such
solutions have been described by, for example, Lerch et al. (1979). In these
solutions potential coefficients have been determined to degree 36. But we should
ask, why use 5° anomalies in these solutions instead of a smaller size such as
1° blocks. One reason relates to the computational effort required for the pro-
cessing of such data. There are 1654 5° equal area anomalies but approximately
42000 1° equal area values or 64800 1°x 1° equiangular blocks on the surface of
the earth. Thus a practical limitation may exist which is implemented by solving
for coefficients only to a certain maximum degree. This maximum degree has
increased in the past few years but with current programs it is usually thought
that the highest degree that could be found would be found from the 180°/8° rule.
Thus for 5° blocks the maximum degree to be found was 36. However, Rapp (1977)
suggested that the 180°/6° rule was not strictly valid so that this justification needs
to be re~examined.

In our general process we are trying to recover potential coefficients from
area mean values of gravity anomalies (ignoring the satellite contributions for a
moment). Contributions from all frequencies in the spherical harmonics are made
to the area means. Clearly, averaging damps out the high frequencies but it does
not eliminate them with the standard averaging operator. This high frequency
information within the means can cause perturbations of the low frequency information
when solutions are made to extract the coefficients.

By going to a smaller block size we approach the theoretical requirement ]
of having infinitely small blocks. In this case there will be no low frequency j
perturbations caused by the finite block size., In practice, infinitely small 1
blocks can not be found (on a global basis) so we would expect, as we go to
smaller blocks, the perturbation on the low degree coefficients would decrease
but not be completely eliminated.

To examine these effects we will carry out several solutions for potential 1
coefficients using surface gravity data alone and then in combination solutions
with different block sizes. We will then compare various solutions to see the
extent of the differences caused by the use of different block size.




Potential Coefficients from Anomaly Data Alone

In a spherical approximation, gravity anomalies, Ag, are related to fully 1
normalized potential coefticients (T, T) through the following. ’

E) - [Je lam) rendre ®

where ¥ is an average value of gravity and F,, are the fully normalized potential
coefficients of degree £ and order m as a function of geocentric latitude @, do
is a differential area, on a unit sphere, in which Ag is given. Because Ag are
not given in differentially small blocks the integration in (1) caun be approximated
in several ways. We first write (1) in the following form.

{6 } = 4n'ytz -1) ;& A& [pt-("“’t’ ﬁ:ﬁi}] 4oy T

Here 4g; is the mean anomaly in the area 40y and $,» and (cos/sin) mA are
evaluated at the mid-point (©,A) of the block. As A0; approaches do, equation
(2) becomes equation (1).

An alternate procedure uses the following equation derived (Meissl, 1971) for
a circular cap whose area is AS:

Fpendo{ it = 7, 55, Lf Baond) {Snon} o8 @

where B, is the Pellinen smoothing operator discussed extensively in Katsambalos
(1979). is computed from:

P sy
B = cor() BT g

where o is the radius of the cap. For rectangular blocks a corresponding 8 value
can be computed by finding the radius of a cap having the same area as the block. We
have for a block 8 In size:

.o (.g,) 9 sme)‘} )

There is a difference between the gravitational spectra of a cap and & rectangular
block but when (5) is used to achieve a correspondence the difference is small (Rapp,
1977).




1f we use (3) in (2) we have:

[P 1 . mA
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1

where AS; is the rectangular block in which Ag, is given. Either equation (2)
or (5) are essentially equivalent, however, (g) is more stable at higher degrees
(. e. > 180°/89 thaun (2) (Katsambalos, 1979).

In our first test of block size effects on potential coefficients we start from
a 1°x 1° anomaly field used in previous studies by Rapp (1978). This set consisted
of 50650 blocks with observed anomalies and 14150 values assumed to be zero.
These anomalies were used in equation (2) to compute potential coefficients up to
degree 36. The 1°x 1° anomalies were used to form a set of 1654 5° equal area
anomalies by direct averaging of the 1°x 1° anomalies within the 5° block. These
anomalies were then used in equation (6) although equation (2) could have been used
with no substantial difference in the results.

We then compared the two coefficient sets by computing for each degree, the
percentage difference, the undulation difference and the anomaly difference. These
differences are shown in Table 1.

Table 1. Difference Between Potential Coefficients
Computed from 5° and 1° Anomalies

n| % | AN (cm)| 4(g) (mgals) n| % | AN (cm)| A(g) (mgals)
19| 24| 16 .45
2! 1.4] 37 .08 20] 22| 11 .33
3| 1.3| 29 .09 21| 31| 17 .53
4| 3.0 30 .14 22| 30| 18 .57 |
5| 2.0| 17 .10 23[ 33| 16 .55 |
8| 3.2 19 .14 24| 32| 15 .52
7] 4.2| 20 .18 25] 44| 22 .83
8| 5.7 18 .19 26| 52| 20 .79
9| 5.6 14 .17 27 49| 19 .76
10] 8.7 20 .28 28|52 20 .84
11 7.4]| 13 .20 2051 18 .76
12{13 14 .24 30[58| 21 .95
. 1311 17 .31 31|53 18 .84
1417 16 .31 32(60| 20 .95 ’
, 15|15 14 .31 33|65 | 24 1.16
1615 15 .36 3¢|62| 24 1.24
17/15 13 .31 35|58 | 20 1.08
18 |20 16 .41 36|75 | 24 1.31
-3-




Between degrees 2 and 36 the average percentage difference was 28%, the
cumulative root mean square undulation difference was *1,2 meters, and the
cumulative root mean square anomaly difference was #3.7 mgals,

We see from these results that there is substantial difference between the
potential coefficients computed from the same fundamental data using two different
block sizes at the higher degrees. For example, at degree 35 we see a 75% differ-
ence in the coefficients corresponding to an undulation difference of 24 cm and an
anomaly difference of +1.3 mgals. The overall difference between the two coeffi-
cient sets of +£1.2 m in undulation and +3.7 mgals in anomaly is significant. It
is clear that block size is an important factor in the accurate determination of
potential coefficients.

Potential Coefficients from Combination Solutions

In most global gravity field determinations today satellite derived information
is combined with terrestrial gravity data. Most of these combinatica solutions use
5° anomaly data. Based on our previous results it is now of interest to us to examine
the effect of block size on combination solutions.

The type of combination solution to be used has been described in detail by Rapp
(1978) where 2 combination of 1°x 1° anomalies and GEM 9 potential coefficients was
carried out. The general model is written as follows:

F(Lzaﬂ Lx.) =0 (7)

which is linearized to form the observation equation:

Bsz + BxVx + W = 0 (8)
where
oF F
By = a—L;’ By = Yy W = F(Lg y L) )]

where 1, are the actual observations (Ag's) and Lo are the "observed" values

of the quantities to be regarded as parameters (in our case potential coefficients)

of the adjustment. If P, and P, are the weight matrices for the observations and
parameters respectively, we haye for the correction to the observed parameters Vy:

Vi = =(By M B, +P,)* By M W (10)




The corrections to the observed quantities (the gravity anomalies) V, are:

. V, = =Pg By M (By Vy +W) (11)
where
-1 [
) In our case R B @
F = Lxo = Lx¢ (13)

where L0 are the given estimates of the potential coefficients obtained from
satellite data and L,° are the coefficients computed from (1) based on the global
set of gravity anomalies.

Since Bx =1, (9) and (10) can be written:
Ve = =((BgPy By )™ + P)™ (BB B ) W (14)

The elements of B 4 will depend on the form of (1) actually implemented. If we use
equation (2) we have:

-1 - - fcos mA
[Bglee = Tny(d-1) Pya(sineg;) {.smm,\j“’* (15)
If we use equation (6) for the potential coefficient determination we have
-1 A
[Belee = Fo5(t-1) 5 {ﬁf:} (16)
where
K,,. - - - (COSmA
B} - [ ncn (Smm}es an
1

Similar expressions hold for the anomaly coefficients ago, 81,0, 4,15 by,; » Which
we wish to be held to near zero in the adjustment. 1

A combination solution was made with the 5° anomalies computed directly from
the 1°x 1° anomalies described earlier. The potential coefficients used were the
GEM 9 coefficients (Lerch et al., 1979) taken to degree 12 with P, assumed to be
diagonal. A solution with the 1°x 1° anomal ies has previously been described by
Rapp (1978). In these solutions a set of adjusted anomalies was computed using
equation (10). These anomalies were developed Into potential coefficients for
comparison purposes,

When dealing with 1°x 1° anomalies the coefficients of By were computed from
(15) while equation (16) was used with the 5° equal area anomalies. The adjusted
, coefficients were found from the adjusted anomalies using equation (2) for the 1°x 1°
anomalies and equation (6) for the 5° equal area values.
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The two adjusted coefficient sets were differenced to find, by degree the
percentage difference, the undulation difference and the anomaly difference. These
results are given in Table 2.

Table 2, Difference Between Potential Coefficients Computed from
the Adjusted Anomalies of Combination Solutions Made with
5° and 1°x 1° Anomalies and the GEM 9 Potential Coefficients.

n % |AN (em)| A(g) (mgals) n| % | AN (cm)| A(g) (mgals)
19| 25 17 .46
2| .4 11 .02 20| 23 12 .35
3| .7 14 .04 21| 32 18 .55
4| .8 6 .03 22| 30 18 .58
5| 2.1 17 .11 23| 32 16 .54
6| 2.6 15 .11 24| 32 15 .53
7| 4.9 23 .21 25| 45 23 .85
8| 5.4 17 .18 26| 53 21 .80
9| 6.7 16 .20 27| 49 19 .75
10| 8.9 20 .28 28| 51 20 .83
11} 7.4 13 .19 29 | 53 18 .79 _
1214 15 .25 30[s6] 22 .96 f
13{13 21 .38 31| 54 18 .85
1419 17 .35 32| 59 20 .94
15}16 15 .33 33| 64 23 1.16
16|17 17 .40 34| 63 25 1.25 i
17|16 13 .32 35| 60 21 1.08
18|21 16 .43 36 | 74 24 1.28 ’

Between degrees 2 and 36 the average percentage difference was 29%, the cumulative
root mean square undulation difference was +1.1 meters, and the cumulative root
mean square anomaly difference was £ 3.8 mgals.

Comparison of Table 1 and Table 2 shows almost the same results after
degree 4. Below that the changes in the combination solution are smaller by a
factor of two from the previous solution. This is caused by the high a priori
weighting of the GEM 9 coefficients at the lower degrees. '

We see that if we wish to improve our geoid determination below the meter
level and to avoid a significant perturbation of our potential coefficients we should
not use 5° anomalies but rather use 1°x 1° or 1° equal area anomalies. Such a
procedure was used by Rapp (1978) but computer limitations (space and time)
allowed only a strict adjustment to degree 12 to be carried out, If we are to use
1°x 1° data a recasting of the combination programs to be used will be needed to
allow a priori coefficients of all degrees (not just to 12) to be used in the combi-
nation solutions. Attempts have been made to improve the programs used in
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Rapp (1978) but no substantial improvement in the rigorous adjustment programs
have been found.

However, it is possible to carry out an adjustment using 1°x 1° data using
an approximate method that yields fast results and compromises the final solution
in a small, and perhaps, acceptable way. Such a technique is described in the
next section.

An Approximate Adjustment with 1°x 1° Anomalies

Rapp (1969) has shown that under certain assumptions the combination procedure
described in the previous section can be considerably simplified. This is done by
assuming all equiangular anomalies have the same accuracy, m, and that the weights
of the observations are assigned as follows:

cos © '
[P) =7 (18)
where we assume P, is a diagonal matrix. If we assume that P, is a diagonal matrix,
an element of Vy (given in (14)) is:

-[W

[VXI = 1+A [Px]

(19)

where W is given by (9) and A is:

A = m® do d
T Ay (e-1) (20)
where d¢ and dA are the latitude and longitude increments of the block. The
adjusted anomalies can be computed from (11) or the simpler expression (Rapp, 1969):

v, = P, B, Px W 21

The obvious advantage of this technique is that we are not required to form or invert
the normal equations to obtain the adjusted coefficients or anomalies. However, to
gain this advantage we assume all blocks have the same accuracy and weight accor-
ding to (18).

We have carried out a combination solution with the approximate technique and
compared the result with the rigorous procedure. This was done using the identical
data ses of Rapp (1978). Here the GEM 9 potential coefficients, taken to degree 12,
were combined with the 50660 1°x 1° anomaly field assuming zero values for the
blocks with no data. The adjusted anomalies were then developed into potential
coefficients to degree 180. In carrying out the approximate solution we used a constant
1°x 1° standard deviation (m) of +14.3 mgals which was the RMS value of the 64800
1°x1° anomaly standard deviations used in the rigorous solution.

e




We examine the differences between the rigorous and approximate adjustment
in several ways., Considering the adjusted coefficients to degree 12 only, we found
a 5.9% difference, a 68 cm RMS undulation difference and a 0.7 mgal RMS difference.

When we compared the two 180 x 180 fields we found the average percentage
difference to be 8.6%, the RMS undulation difference to be 80 cm and the RMS anomaly
difference to be 2.0 mgals. The average percentage difference was a minimum of .
0.6% at degree 3 and a2 maximum of 22% at degree 14, The average for degree 2
through 12 was: 6.0%; for 13 through 24: 15.4%; for 25 through 36: 11.2%; and
for 37 through 48: 9.4%. Higher degree ranges had typical values of about 8%.

From this latter comparison we conclude that the difference between the rigorous
and approximate solutions, as judged on a global basis is small.

It is also informative to compare the individual 1°x 1° adjusted anomalies from
the two solutions. We found that the RMS anomaly difference was 2,2 mgals while
the maximum difference was 90 mgals. The RMS residual was +3.9 mgals from the
approximate solution and *4.2 mgals from the rigorous solution indicating no sub- ;
stantial difference in the residuals averaged globally. ]

The residuals themselves are highly dependent in the rigorous solution on the
accuracy of the observed 1°x 1° anomalies. In Table 3 we show the RMS residual
as a function of the accuracy of the original anomalies for both the rigorous and
approximate solution.

Table 3. RMS 1°x 1° Residual Anomalies as a Function
of the Original Anomaly Accuracies

Accuracy Range Rigorous Approximate Number of
Blocks
1to Smgals| %0.3 mgals +1.8 mgals 5264
6 to 10 0.7 1.8 25945
11 to 15 2.1 2.7 8632 ]
16 to 20 3.6 4.1 6394
21 to 25 5.1 5.2 4340
26 to 30 7.9 6.4 14190
31 to 35 27.9 2.4 35

We see the small residuals in the rigorous solution are at the small standard deviations
while in the approximate solution the residuals are somewhat larger at the small stan-
dard deviations. Although all anomalies are given the same standard deviation in the
approximate solution we can see some dependence in the residual magnitudes with
respect to the standard deviations,




We also looked at the number of residuals by magnitudes as shown in Table 4.

Table 4. Number of 1°x 1° Residuals Within A Specified Range

Range (mgals) | Rigorous | Approximate
Oto 2 47538 40291
2to 4 7245 15096
4to 6 3908 4210
6to 8 2136 1625
8 to 10 921 813

10 to 12 598 586
12 to 14 564 446
14 to 16 301 497

This table shows that in most cases the number of residuals in each range is roughly
the same in both solutions except for the 2 to 4 mgal range where the count differs
by a factor of 2.

In comparing the adjusted anomalies from the two adjustments we found two
anomalies where the residuals differed by 90 and 76 mgals. In both cases the
assigned standard deviations, in the rigorous solution were +£81 and %78 mgals.
These extremely large standard deviations reflected the very large uncertainty in
the original 1°x 1° anomaly data. In the rigorous adjustment the residuals for these
blocks were 93 and 79 mgals while in the approximate solution the residuals were
both 3 mgals.

Timing Estimates

Computer time estimates for the rigorous and approximate combination solutions
using 1°x 1° anomalies have been made by Kostas Katsambalos based on our runs on
the Amdahl 470 machine available at The Ohio State University. These times were
estimated for carrying out an adjustment with a priori potential coefficients given to
degree 20 and to degree 36. After the adjustment is made the adjusted anomalies can
be developed into potential coefficients in two minutes which is thus a minor effort.




Table 5. Computer Time Estimates for Combination Solutions

n Rigorous Approximate
20 5 hours 4 minutes )
36 47 hours 13 minutes

The time estimates clearly reflect the increased computational efforts for the
rigorous solutions. Since the increase in computer time of the rigorous solution
relative to the approximate solution is substantial, one must decide from the cost
_standpoint if the improved procedure is significantly more accurate than the approx-
imate solution. Our previous discussions indicate that this will not be the case.

Conclusions

We have demonstrated that the use of 5° anomalies in potential coefficient
determinations can introduce significant errors in these coefficients. Based on
comparisons with solutions made with 1°x 1° anomalies the percentage error was
small at the lower degrees but increased to 74% at degree 36. In a combination
solution with the GEM 9 coefficients the average percentage difference was 29%
with an RMS undulation difference of £ 1.1 meters and a RMS anomaly difference
of +3.8 mgals considering degrees 2 through 36. These substantial differences
are caused by the distortion of the coefficients found from 5° blocks caused by
the large size of the block.

These results strongly suggest that future combination solutions to degree
36 (or so) should be carried out with 1°x 1° anomalies and not 5° data. However,
the computer time to do this could be quite large so that an approximate technique
for a combination solution was tested with the results compared to the rigorous
solution. For degrees 2 through 36, the average percentage difference of the co-
efficients (rigorous vs approximate) was 14%, the RMS undulation difference was
79 cm and the RMS anomaly difference was £1.4 mgals, We see that the percent
difference is about one-half that found in comparing the 5° solution with the 1°
solution.

These results suggest that for highest accuracy in our combination solutions we !
should not use 5° anomalies but 1°x 1° anomalies. Since a rigorous adjustment to
degree 20 or 36 may be prohibitive in computer time an approximate combination .
solution can be made with the 1°x 1° data that is very fast although some small
differences over the optimum result will be found.

Finally, we should note that these combination solution discussions apply to
one type of combination solution. Another form, most often used in practice (Rapp,
1969, Lerch, 1979) should be investigated to see if the same conclusions are valid.
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